Abstract

Urban informal settlements (UISs) are densely populated and poorly developed residential areas in urban areas. The mapping of UISs using remote sensing is crucial for urban planning and management. However, the large-scale extraction of UISs is impeded by the labor-intensive task of collecting numerous training samples and the lack of automatic and effective city partition. To overcome these challenges, we proposed a large-scale extraction framework for UISs based on semantic segmentation of high-resolution remote sensing images. Utilizing Deeplab V3 Plus as the foundational extraction model, the proposed framework introduces fast sample collection based on GLCM features. Besides, an automatic city partition approach combined with clustering and fine-tuning was proposed to enhance the performance on extracting a specific category of UISs. The results of the case study conducted in 36 major Chinese cities show that the proposed framework achieved good performance, with an overall F1 score of 85.76%. Furthermore, comparative assessments were performed to demonstrate the effectiveness of automatic city partition. The proposed framework offers a practical approach for the large-scale extraction of UISs, which holds great significance for sustainable development, poverty estimation, infrastructure construction, and urban planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call