Abstract
Liquid-phase transmission electron microscopy (TEM) offers a real-time microscopic observation of the nanometer scale for understanding the underlying mechanisms of the growth, etching, and interactions of colloidal nanoparticles. Despite such unique capability and potential application in diverse fields of analytical chemistry, liquid-phase TEM studies rely on information obtained from the limited number of observed events. In this work, a novel liquid cell with a large-scale array of highly ordered nanochambers is constructed by sandwiching an anodic aluminum oxide membrane between graphene sheets. TEM analysis of colloidal gold nanoparticles dispersed in the liquid is conducted, employing the fabricated nanochamber array, to demonstrate the potential of the nanochamber array in quantitative liquid-phase TEM. The independent TEM observations in the multiple nanochambers confirm that the monomer attachment and coalescence processes universally govern the overall growth of nanoparticles, although individual nanoparticles follow different growth trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.