Abstract
The collection of very large text sources has revolutionized the study of natural language, leading to the development of several models of language learning and distributional semantics that extract sophisticated semantic representations of words based on the statistical redundancies contained within natural language (e.g., Griffiths, Steyvers, & Tenenbaum, ; Jones & Mewhort, ; Landauer & Dumais, ; Mikolov, Sutskever, Chen, Corrado, & Dean, ). The models treat knowledge as an interaction of processing mechanisms and the structure of language experience. But language experience is often treated agnostically. We report a distributional semantic analysis that shows written language in fiction books varies appreciably between books from the different genres, books from the same genre, and even books written by the same author. Given that current theories assume that word knowledge reflects an interaction between processing mechanisms and the language environment, the analysis shows the need for the field to engage in a more deliberate consideration and curation of the corpora used in computational studies of natural language processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.