Abstract
With growing concern on oil safety problems, developing a simple and sensitive method to detect Aflatoxin B1 (AFB1), a common mycotoxin in peanut oil, is very necessary. In this study, Surface-enhanced Raman Scattering (SERS) aptasensor was developed for ultrasensitive AFB1 detection using the amino-terminal AFB1 aptamer (NH2-DNA1); and thiol-terminal AFB1 complementary aptamer (SH-DNA2) conjugated magnetic-beads (CS-Fe3O4) as enrichment nanoprobe and AuNR@DNTB@Ag nanorods (ADANRs) as reporter nanoprobe respectively. 5,5′-Dithiobis(2-nitrobenzoicacid) (DNTB) with large Raman scattering cross-section and no fluorescence interference was embedded in Au and Ag core/shell nanorods as Raman reporter molecules. CS-Fe3O4 possessed excellent biocompatibility and superparamagnetism for rapid signal enrichment. Therefore, NH2-DNA1-CS-Fe3O4 and SH-DNA2-ADANRs were fabricated via the hybrid reaction between aptamers and complementary aptamers. When there is AFB1, AFB1 would competitively combine with the NH2-DNA1-CS-Fe3O4 inducing the dissociation of SH-DNA2-ADANRs from CS-Fe3O4 and further decreasing the SERS signal. Based on this developed SERS aptasensor, a low limit of 0.0036ng/mL and an effective linear detection range from 0.01 to 100ng/mL with the correlation coefficient up to 0.986 for AFB1 detection were obtained. Moreover, the specificity of this SERS aptasensor was demonstrated by detecting other two mycotoxins and its accuracy for AFB1 detection in real peanut oil was further confirmed by standard addition recovery test.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.