Abstract

We introduce MMTrack (max-margin tracker), a single-target tracker that linearly combines constant and adaptive appearance features. We frame offline single-camera tracking as a structured output prediction task where the goal is to find a sequence of locations of the target given a video. Following recent advances in machine learning, we discriminatively learn tracker parameters by first generating suitable bad trajectories and then employing a margin criterion to learn how to distinguish among ground truth trajectories and all other possibilities. Our framework for tracking is general, and can be used with a variety of features. We demonstrate a system combining a variety of appearance features and a motion model, with the parameters of these features learned jointly in a coherent learning framework. Further, taking advantage of a reliable human detector, we present a natural way of extending our tracker to a robust detection and tracking system. We apply our framework to pedestrian tracking and experimentally demonstrate the effectiveness of our method on two real-world data sets, achieving results comparable to state-of-the-art tracking systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.