Abstract
Many researchers seek factors that predict the cross-section of stock returns. In finance, the key is to replicate anomalies by long-short portfolios based on their factor scores, with microcaps alleviated via New York Stock Exchange (NYSE) breakpoints and value-weighted returns. In econometrics, the key is to include a covariance matrix estimator of stock returns for the (mimicking) portfolio construction. This paper marries these two strands of literature in order to test the zoo of cross-sectional anomalies by injecting size controls, basically NYSE breakpoints and value-weighted returns, into efficient sorting. Thus, we propose to use a covariance matrix estimator for ultra-high dimensions (up to 5,000) taking into account large, small and microcap stocks. We demonstrate that using a nonlinear shrinkage estimator of the covariance matrix substantially enhances the power of tests for cross-sectional anomalies: On average, ‘Student’ t-statistics more than double.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.