Abstract

This paper studies an infinite-server queue in a random environment, meaning that the arrival rate, the service requirements, and the server work rate are modulated by a general cadlag stochastic background process. To prove a large deviations principle, the concept of attainable parameters is introduced. Scaling both the arrival rates and the background process, a large deviations principle for the number of jobs in the system is derived using attainable parameters. Finally, some known results about Markov-modulated infinite-server queues are generalized and new results for several background processes and scalings are established in examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.