Abstract
In measurement based admission control, measured traffic parameters are used to determine the maximum number of connections that can be admitted to a resource within a given quality constraint. The assumption that the measured parameters are the true ones can compromise admission controls measured parameters are random quantities, causing additional variability. This paper analyzes the impact of measurement error within the framework of Large Deviation theory. For a class of admission controls, large deviation principles are established for the number of admitted connections, and for the attained overflow rates. These are applied to admission to bufferless resources, and buffered resources in both the many sources and large buffer asymptotic. The sampling properties of effective bandwidths are presented, together with a discussion the impact of the temporal extent of individual samples on estimator variability. Sample correlations are shown to increase estimator variances procedures to make admission control robust with respect to these are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.