Abstract

BackgroundPredictive models of post-fire tree and stem mortality are vital for management planning and understanding fire effects. Post-fire tree and stem mortality have been traditionally modeled as a simple empirical function of tree defenses (e.g., bark thickness) and fire injury (e.g., crown scorch). We used the Fire and Tree Mortality database (FTM)—which includes observations of tree mortality in obligate seeders and stem mortality in basal resprouting species from across the USA—to evaluate the accuracy of post-fire mortality models used in the First Order Fire Effects Model (FOFEM) software system. The basic model in FOFEM, the Ryan and Amman (R-A) model, uses bark thickness and percentage of crown volume scorched to predict post-fire mortality and can be applied to any species for which bark thickness can be calculated (184 species-level coefficients are included in the program). FOFEM (v6.7) also includes 38 species-specific tree mortality models (26 for gymnosperms, 12 for angiosperms), with unique predictors and coefficients. We assessed accuracy of the R-A model for 44 tree species and accuracy of 24 species-specific models for 13 species, using data from 93 438 tree-level observations and 351 fires that occurred from 1981 to 2016.ResultsFor each model, we calculated performance statistics and provided an assessment of the representativeness of the evaluation data. We identified probability thresholds for which the model performed best, and the best thresholds with either ≥80% sensitivity or specificity. Of the 68 models evaluated, 43 had Area Under the Receiver Operating Characteristic Curve (AUC) values ≥0.80, indicating excellent performance, and 14 had AUCs <0.7, indicating poor performance. The R-A model often over-predicted mortality for angiosperms; 5 of 11 angiosperms had AUCs <0.7. For conifers, R-A over-predicted mortality for thin-barked species and for small diameter trees. The species-specific models had significantly higher AUCs than the R-A models for 10 of the 22 models, and five additional species-specific models had more balanced errors than R-A models, even though their AUCs were not significantly different or were significantly lower.ConclusionsApproximately 75% of models tested had acceptable, excellent, or outstanding predictive ability. The models that performed poorly were primarily models predicting stem mortality of angiosperms or tree mortality of thin-barked conifers. This suggests that different approaches—such as different model forms, better estimates of bark thickness, and additional predictors—may be warranted for these taxa. Future data collection and research should target the geographical and taxonomic data gaps and poorly performing models identified in this study. Our evaluation of post-fire tree mortality models is the most comprehensive effort to date and allows users to have a clear understanding of the expected accuracy in predicting tree death from fire for 44 species.

Highlights

  • Predictive models of post-fire tree and stem mortality are vital for management planning and understanding fire effects

  • Our evaluation of post-fire tree mortality models is the most comprehensive effort to date and allows users to have a clear understanding of the expected accuracy in predicting tree death from fire for 44 species

  • Post-fire tree and stem mortality has been traditionally modeled as a simple empirical function of tree defenses and fire injury (Ryan and Amman 1996; Woolley et al 2012)

Read more

Summary

Introduction

Predictive models of post-fire tree and stem mortality are vital for management planning and understanding fire effects. Post-fire tree and stem mortality have been traditionally modeled as a simple empirical function of tree defenses (e.g., bark thickness) and fire injury (e.g., crown scorch). We used the Fire and Tree Mortality database (FTM)—which includes observations of tree mortality in obligate seeders and stem mortality in basal resprouting species from across the USA—to evaluate the accuracy of post-fire mortality models used in the First Order Fire Effects Model (FOFEM) software system. Post-fire tree and stem mortality has been traditionally modeled as a simple empirical function of tree defenses (bark thickness) and fire injury (crown scorch and stem char) (Ryan and Amman 1996; Woolley et al 2012). Tree-scale models are used for applied decision-making, such as developing salvage logging silviculture prescriptions, and hazard tree guidelines (Hood et al 2010; Hood and Lutes 2017)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.