Abstract

Strong support for the central role of the ADP/ATP carrier (AAC) in the mitochondrial permeability transition (mPT) is provided by the single-channel current measurements in patch-clamp experiments with the isolated reconstituted AAC. In previous work [Brustovetsky, N., and Klingenberg, M. (1996) Biochemistry 35, 8483-8488], this technique was applied to the AAC isolated from bovine heart mitochondria. Here we used recombinant AAC (rAAC) from Neurospora crassa expressed in E. coli, since AAC from mammalian sources cannot be expresssed in E. coli. The rAAC is free from residual mitochondrial components which might associate with the AAC in preparation from bovine heart. Ca(2+)-dependent channels with up to 600 pS are obtained, which are gated at >150 mV. The channel corresponds to a preferential matrix-outside orientation of rAAC in the patch membrane as shown with carboxyatractylate and a polar gating asymmetry. The channel is inhibited by ADP and bongkrekate, not by carboxyatractylate. Cyclophilin, isolated from Neurospora crassa, suppresses the gating, thus increasing conductivity at high positive voltage. Cyclosporin A abolishes the cyclophilin effect. ADP does not eliminate the cyclophilin effect but produces fast large-amplitude flickering of the channel without a stable decrease of the channel conductance. Also the pro-oxidant tert-butyl hydroperoxide reversibly suppresses voltage gating of the channel. The results show that the AAC can be a conducting component of the mPT pore, exhibiting similar characteristics as the mPT pore (response to Ca(2+), BKA, ADP), with a cyclophilin and pro-oxidant-sensitive gating at high voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.