Abstract

Bradbury Nielsen gates are well known devices used to switch ion beams and are typically applied in mass or mobility spectrometers for separating beam constituents by their different flight or drift times. A Bradbury Nielsen gate consists of two interleaved sets of electrodes. If two voltages of the same amplitude but opposite polarity are applied the gate is closed, and for identical (zero) potential the gate is open. Whereas former realizations of the device employ actual wires resulting in difficulties with winding, fixing and tensioning them, our approach is to use two grids photo-etched from a metallic foil. This design allows for simplified construction of gates covering large beam sizes up to at least 900 mm 2 with variable wire spacing down to 250 μm. By changing the grids the wire spacing can be varied easily. A gate of this design was installed and systematically tested at TRIUMF's ion trap facility, TITAN, for use with radioactive beams to separate ions with different mass-to-charge ratios by their time-of-flight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.