Abstract
Due to the limited maximum output power of the pulsers based on avalanche transistors, high-power ultrawideband (UWB) radiation systems usually synthesize plenty of modules simultaneously to achieve a high peak effective potential (rEp). However, this would lead to an increased aperture size as well as a narrower beam, which would limit their applications in intentional electromagnetic interference fields. In this paper, a high-power UWB radiation system with beam broadening capacity is developed. To achieve beam broadening in the time domain, a power-law time delay distribution method is proposed and studied by simulation, and then the relative excitation time delays of the modules are optimized to achieve higher rEp and avoid beam splitting in the beam broadening mode. In order to avoid false triggering of the pulser elements when implementing the beam broadening, the mutual coupling effect in the system is analyzed and suppressed by employing onboard high-pass filters, since the mutual coupling effect is much more severe in the low-frequency range. Finally, a radiation system with 36 modules is developed. Measuring results indicate that in the high-rEp mode, the developed system could achieve a maximum effective potential rEp of 313.6kV and a maximum pulse-repetition-rate of 20kHz. In the beam broadening mode, its half-peak-power beam width in the H-plane is broadened from the original value of 3.9° to 7.9°, with a maximum rEp of 272.9kV. The polarization direction of the system could be flexibly adjusted by a built-in motor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.