Abstract

Acute kidney injury (AKI) is associated with higher risk for morbidity and mortality post-operatively. Ischemia-reperfusion injury (IRI) is the most common cause of AKI. To mimic this clinical scenario, this study presents a highly reproducible large animal model of renal IRI in swine using temporary percutaneous bilateral balloon-catheter occlusion of the renal arteries. The renal arteries are occluded for 60 min by introducing the balloon-catheters through the femoral and carotid artery and advancing them into the proximal portion of the arteries. Iodinated contrast is injected in the aorta to assess any opacification of the kidney vessels and confirm the success of the artery occlusion. This is furtherly confirmed by the flattening of the pulse waveform at the tip of the balloon catheters. The balloons are deflated and removed after 60 min of bilateral renal artery occlusion, and the animals are allowed to recover for 24 h. At the end of the study, plasma creatinine and blood urea nitrogen significantly increase, while eGFR and urine output significantly decrease. The need for iodinated contrast is minimal and does not affect renal function. Bilateral renal artery occlusion better mimics the clinical scenario of perioperative renal hypoperfusion, and the percutaneous approach minimizes the impact of the inflammatory response and the risk of infection seen with an open approach, such as a laparotomy. The ability to create and reproduce this clinically relevant swine model eases the clinical translation to humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call