Abstract

ABSTRACTA new technique for direct determination of the density of electronic states (DOS) in disordered semiconductors is described. It involves Laplace transformation of transient photocurrent data I(t) followed by the numerical solution of the system of linear algebraic equations obtained from the Fredholm integral of the first kind, for a DOS represented by a series of discrete levels. No approximations are used in the solution, and no prior assumptions as to the form of the DOS are made. The fidelity of this method is assessed and compared with existing techniques by application to computer-simulated I(t) data generated from single-level and continuous DOS profiles, and to experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.