Abstract

Movement is fundamental to the animal ecology, determining how, when, and where an individual interacts with the environment. The animal dynamics is usually inferred from trajectory data described as a combination of moves and turns, which are generally influenced by the vast range of complex stochastic stimuli received by the individual as it moves. Here we consider a statistical physics approach to study the probability distribution of animal move lengths based on stochastic differential Langevin equations and the superstatistics formalism. We address the stochastic influence on the move lengths as a Wiener process. Two main cases are considered: one in which the statistical properties of the noise do not change along the animal’s path and another with heterogeneous noise statistics. The latter is treated in a compounding statistics framework and may be related to heterogeneous landscapes. We study Langevin dynamics processes with different types of nonlinearity in the deterministic component of movement and both linear and nonlinear multiplicative stochastic processes. The move length distributions derived here comprise the possibility of movement multiscales, diffusive and superdiffusive (Lévy-like) dynamics, and include most of the distributions currently considered in the literature of animal movement, as well as some new proposals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.