Abstract

Aiming at the existing IP geolocation approaches does not consider the errors of landmarks and delay; a new geolocation approach-utilized landmark calibration is proposed in this paper. At first, we find out these landmarks shared the nearest common router with a target IP by path detection; second, a deviation is assigned to each related landmark according to the corresponding organization and network connectivity; then, while the landmark’s location is regarded as the points within a possible area, target IP geolocation can be converted into a constrained optimization problem; at last, we can get the location estimation of the target IP by solving the above problem, as well as the real deviation of each landmark. The algorithm analysis and experimental results show that, when a landmark is not located in its claimed position, our geolocation approach can give a location for the measured target IP, as well as the location of the nearest common router for the unmeasured target IP.

Highlights

  • IP geolocation refers to use the corresponding IP address to determine the location of a network entity in some level of granularity [1, 2], such as finding out which city is a host with public IP located at

  • According to the evolution of location-based service (LBS), IP geolocation-based applications are more and more popular, such as, targeted advertising according to the users’ locations, adjusting the language on the site by ISP automatically according to the clients’ regions, and developing the deployment strategy of the network infrastructure, and discovering fault nodes, specifying the geographic region of a cloud service, is increasingly common, and geographic region options are provided to help customers achieve a variety of objectives, including performance, continuity, and regulatory compliance [3, 4]

  • For the SLG method, the geolocation accuracy depends heavily on the following three conditions: (1) there are landmarks around the target IP: usually, the landmark near the target IP is likely to get accurate constraint and geolocation results; (2) the positions of related landmarks are accurate: at the fine-grained positioning stage, the landmark is used as the probe point, and when the real position of landmark is inconsistent with a claimed position, the geolocation approach cannot guarantee the real location the target IP is located in geolocation area; and

Read more

Summary

Introduction

Taking all possible error of landmarks and delay as the deviation of a landmark, so, instead of a point, we use a possible area to indicate the landmark’s position, and a new geolocation approach to estimate the target’s location based on landmark calibration is proposed.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.