Abstract

The root rot causing oomycete, Phytophthora agathidicida, threatens the long-term survival of the iconic New Zealand kauri. Currently, testing for this pathogen involves an extended soil bioassay that takes 14-20 days and requires specialised staff, consumables, and infrastructure. Here we describe a loop-mediated isothermal amplification (LAMP) assay for the detection of P. agathidicida that targets a portion of the mitochondrial apocytochrome b coding sequence. This assay has high specificity and sensitivity; it did not cross react with a range of other Phytophthora isolates and detected as little as 1 fg of total P. agathidicida DNA or 116 copies of the target locus. Assay performance was further investigated by testing plant tissue baits from flooded soil samples using both the extended soil bioassay and LAMP testing of DNA extracted from baits. In these comparisons, P. agathidicida was detected more frequently using the LAMP test. In addition to greater sensitivity, by removing the need for culturing, the hybrid baiting plus LAMP approach is more cost effective than the extended soil bioassay and, importantly, does not require a centralised laboratory facility with specialised staff, consumables, and equipment. Such testing will allow us to address outstanding questions about P. agathidicida. For example, the hybrid approach could enable monitoring of the pathogen beyond areas with visible disease symptoms, allow direct evaluation of rates and patterns of spread, and allow the effectiveness of disease control to be evaluated. The hybrid LAMP bioassay also has the potential to empower local communities to evaluate the pathogen status of local kauri stands, providing information for disease management and conservation initiatives.

Highlights

  • The long-term survival of kauri, Agathis australis (D.Don) Loudon (Araucariaceae), is threatened by the oomycete Phytophthora agathidicida B.S

  • A comparison of mitochondrial genome sequences for members of Phytophthora clade 5 suggested several potential targets for a loop-mediated isothermal amplification (LAMP) assay specific to P. agathidicida

  • The exception was a set of six primers targeting a 227 nucleotide long section of the apocytochrome b coding sequence spanning from nucleotide position 392 to position 617 (Table 1; Fig 2)

Read more

Summary

Introduction

The long-term survival of kauri, Agathis australis (D.Don) Loudon (Araucariaceae), is threatened by the oomycete Phytophthora agathidicida B.S. Weir, Beever, Pennycook & Bellgard (Peronosporaceae) [1]. Beever, Pennycook & Bellgard (Peronosporaceae) [1] A rapid, field deployable assay for the kauri dieback pathogen, Phytophthora agathidicida numbers listed in Supporting Information files S1 Table and S3 Table

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.