Abstract
Rechargeable aluminum-ion (Al-ion) batteries have important potential for fast charging and safe energy-storage systems. Here, we develop a composite composed of lamellar V2O3@C nanosheets, which displays high electrochemical properties as an Al-ion battery cathode. The unique structure is conducive to the rapid insertion and release of Al3+ ions, electrolyte infiltration, and improved conductivity. After cycling 500 times, the capacity exceeds 242.5 mA h g-1. Under a low temperature of -10 °C, the capacity remains 150.8 mA h g-1, and the Coulombic efficiency is higher than 98.8%. The V2O3@C also exhibits a good reversibility verified by using ex situ X-ray powder diffraction patterns, while the constant current intermittent titration technology shows a low reaction barrier, which indicates that the lamellar composite presented here could find significant applications for engineering many high-performance energy-storage systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.