Abstract

We formulate the Lagrangian perturbation theory of galaxy intrinsic alignments and compute the resulting auto and cross power spectra of galaxy shapes, densities and matter to 1-loop order. Our model represents a consistent effective-theory description of galaxy shape including the resummation of long-wavelength displacements which damp baryon acoustic oscillations, and includes one linear, three quadratic and two cubic dimensionless bias coefficients at this order, along with counterterms and stochastic contributions whose structure we derive. We compare this Lagrangian model against the three-dimensional helicity spectra of halo shapes measured in N-body simulations by ref. [1] and find excellent agreement on perturbative scales while testing a number of more restrictive bias parametrizations. The calculations presented are immediately relevant to analyses of both cosmic shear surveys and spectroscopic shape measurements, and we make a fast FFTLog-based code spinosaurus publicly available at https://github.com/sfschen/spinosaurus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.