Abstract
In this paper, we propose a novel algorithm for solving the classical P-median problem. The essential aim is to identify the optimal extended Lagrangian multipliers corresponding to the optimal solution of the underlying problem. For this, we first explore the structure of the data matrix in P-median problem to recast it as another equivalent global optimization problem over the space of the extended Lagrangian multipliers. Then we present a stochastic search algorithm to find the extended Lagrangian multipliers corresponding to the optimal solution of the original P-median problem. Numerical experiments illustrate that the proposed algorithm can effectively find a global optimal or very good suboptimal solution to the underlying P-median problem, especially for the computationally challenging subclass of P-median problems with a large gap between the optimal solution of the original problem and that of its Lagrangian relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.