Abstract

In this paper a modified multiplicative decomposition of the right stretch tensor is proposed and used for finite deformation elastoplastic analysis of hardening materials. The total symmetric right stretch tensor is decomposed into a symmetric elastic stretch tensor and a non-symmetric plastic deformation tensor. The plastic deformation tensor is further decomposed into an orthogonal transformation and a symmetric plastic stretch tensor. This plastic stretch tensor and its corresponding Hencky’s plastic strain measure are then used for the evolution of the plastic internal variables. Furthermore, a new evolution equation for the back stress tensor is introduced based on the Hencky plastic strain. The proposed constitutive model is integrated on the Lagrangian axis of the plastic stretch tensor and does not make reference to any objective rate of stress. The classic problem of simple shear is solved using the proposed model. Results obtained for the problem of simple shear are identical to those of the self-consistent Eulerian rate model based on the logarithmic rate of stress. Furthermore, extension of the proposed model to the mixed nonlinear isotropic/kinematic hardening behaviour is presented. The model is used to predict the nonlinear hardening behaviour of SUS 304 stainless steel under fixed end finite torsional loading. Results obtained are in good agreement with the available experimental results reported for this material under fixed end finite torsional loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.