Abstract

The numerical simulation of airbags is receiving an increasing attention for the remarkable advantages in terms of cost, efficiency, flexibility and amount of data that can be extracted from the analysis. This work proposes an advanced fluid–structure interaction (FSI) numerical technique for the simulation of airbag deployment. The fluid subproblem, described by weakly compressible Navier–Stokes equations, is solved exploiting the advanced features of the Particle Finite Element Method (PFEM) while the solid subproblem is addressed using standard Finite Element method. A domain decomposition approach with a special treatment of the fluid–structure interface conditions has been implemented to couple fluid and structural solvers allowing for non-conforming meshes at the interface and different time step size in the two subdomains. A peculiar feature of the proposed methodology is the explicit time integration, mandatory for the solution of very fast dynamics problems, like the airbag deployment: an explicit fluid solver is coupled explicitly with an explicit structural solver. The proposed technique is first tested on a inflation of a balloon, showing very good agreements and then it has been applied to the real case of airbag deployment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.