Abstract
We develop a general framework of using the Lagrangian variables for calculating the energy of waves on a steady Euler flow and the mean flow induced by their nonlinear interaction. With the mean flow at hand we can determine, without ambiguity, all the coefficients of the amplitude equations to third order in amplitude for a rotating flow subject to a steady perturbation breaking the circular symmetry of the streamlines. Moreover, a resonant triad of waves is identified which brings in the secondary instability of the Moore–Saffman–Tsai–Widnall instability, and with the aid of the energetic viewpoint, resonant amplification of the waves without bound is numerically confirmed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.