Abstract
Here we investigate the Cauchy problem for the barotropic Navier-Stokes equations in ℝ n , in the critical Besov spaces setting. We improve recent results as regards the uniqueness condition: initial velocities in critical Besov spaces with (not too) negative indices generate a unique local solution. Apart from (critical) regularity, the initial density just has to be bounded away from 0 and to tend to some positive constant at infinity. Density-dependent viscosity coefficients may be considered. Using Lagrangian coordinates is the key to our statements as it enables us to solve the system by means of the basic contraction mapping theorem. As a consequence, conditions for uniqueness are the same as for existence, and Lipschitz continuity of the flow map (in Lagrangian coordinates) is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.