Abstract
The advection-diffusion equation is studied via a global Lagrangian coordinate transformation. The metric tensor of the Lagrangian coordinates couples the dynamical system theory rigorously into the solution of this class of partial differential equations. If the flow has chaotic streamlines, the diffusion will dominate the solution at a critical time, which scales logarithmically with the diffusivity. The subsequent rapid diffusive relaxation is completed on the order of a few Lyapunov times, and it becomes more anisotropic the smaller the diffusivity. The local Lyapunov time of the flow is the inverse of the finite time Lyapunov exponent. A finite time Lyapunov exponent can be expressed in terms of two convergence functions which are responsible for the spatio-temporal complexity of both the advective and diffusive transports. This complexity gives a new class of diffusion barrier in the chaotic region and a fractal-like behavior in both space and time. In an integrable flow with shear, there also exist fast and slow diffusion. But unlike that in a chaotic flow, a large gradient of the scalar field across the KAM surfaces can be maintained since the fast diffusion in an integrable flow is strictly confined within the KAM surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.