Abstract
ABSTRACTA Lagrange multiplier test for testing the parametric structure of a constant conditional correlation-generalized autoregressive conditional heteroskedasticity (CCC-GARCH) model is proposed. The test is based on decomposing the CCC-GARCH model multiplicatively into two components, one of which represents the null model, whereas the other one describes the misspecification. A simulation study shows that the test has good finite sample properties. We compare the test with other tests for misspecification of multivariate GARCH models. The test has high power against alternatives where the misspecification is in the GARCH parameters and is superior to other tests. The test is not greatly affected by misspecification in the conditional correlations and is therefore well suited for considering misspecification of GARCH equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.