Abstract

ABSTRACT Previous work has argued that atomic gas mass estimates of galaxies from 21-cm H i emission are systematically low due to a cold opaque atomic gas component. If true, this opaque component necessitates a $\sim 35{{\ \rm per\ cent}}$ correction factor relative to the mass from assuming optically thin H i emission. These mass corrections are based on fitting H i spectra with a single opaque component model that produces a distinct ‘top-hat’ shaped line profile. Here, we investigate this issue using deep, high spectral resolution H i VLA observations of M31 and M33 to test if these top-hat profiles are instead superpositions of multiple H i components along the line of sight. We fit both models and find that ${\gt}80{{\ \rm per\ cent}}$ of the spectra strongly prefer a multicomponent Gaussian model while ${\lt}2{{\ \rm per\ cent}}$ prefer the single opacity-corrected component model. This strong preference for multiple components argues against previous findings of lines of sight dominated by only cold H i. Our findings are enabled by the improved spectral resolution (0.42 ${\rm km\, s^{-1}}$), whereas coarser spectral resolution blends multiple components together. We also show that the inferred opaque atomic ISM mass strongly depends on the goodness-of-fit definition and is highly uncertain when the inferred spin temperature has a large uncertainty. Finally, we find that the relation of the H i surface density with the dust surface density and extinction has significantly more scatter when the inferred H i opacity correction is applied. These variations are difficult to explain without additionally requiring large variations in the dust properties. Based on these findings, we suggest that the opaque H i mass is best constrained by H i absorption studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.