Abstract

The baculovirus expression vector (BEV) system is an efficient, cost-effective, and scalable method to produce recombinant adeno-associated virus (rAAV) gene therapy vectors. Most BEV designs emulate the wild-type AAV transcriptome and translate the AAV capsid proteins, VP1, VP2, and VP3, from a single mRNA transcript with three overlapping open reading frames (ORFs). Non-canonical translation initiation codons for VP1 and VP2 reduce their abundances relative to VP3. Changing capsid ratios to improve rAAV vector efficacy requires a theoretical modification of the translational context. We have developed a Lac repressor-inducible system to empirically regulate the expression of VP1 and VP2 proteins relative to VP3 in the context of the BEV. We demonstrate the use of this system to tune the abundance, titer, and potency of a neurospecific rAAV9 serotype derivative. VP1:VP2:VP3 ratios of 1:1:8 gave optimal potency for this rAAV. It was discovered that the ratios of capsid proteins expressed were different than the ratios that ultimately were in purified capsids. Overexpressed VP1 did not become incorporated into capsids, while overexpressed VP2 did. Overabundance of VP2 correlated with reduced rAAV titers. This work demonstrates a novel technology for controlling the production of rAAV in the BEV system and shows a new perspective on the biology of rAAV capsid assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call