Abstract

The rapid evolution of robotics across various sectors, including healthcare, manufacturing, and domestic applications, has underscored a significant workforce skills gap. The shortage of qualified professionals in the labor market has had adverse effects on production capacities. Therefore, the significance of education and training for cultivating a skilled workforce cannot be overstated. This research work presents the development of a pedagogical approach centered on laboratory infrastructure designed specifically with multidisciplinary technologies and strategic human–machine interaction protocols to enhance learning in industrial robotics courses. Progressive competencies in laboratory protocols are developed, focusing on programming and simulating real-world industrial robotics tasks, to bridge the gap between theoretical education and practical industrial applications for higher education students. The proposed infrastructure includes a user-configurable maze comprising different colored elements, defining starting points, endpoints, obstacles, and varying track sections. These elements foster a dynamic and unpredictable learning environment. The infrastructure is fabricated using Computer Numerical Control (CNC) machining and 3D printing techniques. A collaborative robot, the Universal Robots UR3e, is used to navigate the maze and solve the track with advanced computer vision and human–machine communication. The amalgamation of practical experience and collaborative robotics furnishes students with hands-on experience, equipping them with the requisite skills for effective programming and manipulation of robotic devices. Empowering human–machine interaction and human–robot collaboration assists in addressing the industry’s demand for skilled labor in operating collaborative robotic manipulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call