Abstract

The fate of pyrimidine-2- 14C-rimsulfuron in a rendzina soil was investigated using a laboratory microcosm approach. Measurement of CO 2 evolution suggested that rimsulfuron applied at 5 times the recommended dose did not affect soil respiration. Under abiotic conditions, no mineralization of 14C-rimsulfuron into 14C-CO 2 occured and under biotic ones it was very low reaching 0.75 % of the applied 14C-rimsulfuron after 246 days of incubation. The analysis of data showed that a three-half order model provided the best fit for the mineralization curve. Extractable 14C-residues decreased over time to 70 – 80% of the applied 14C-rimsulfuron at the end of the incubation. After 246 days of incubation, non extractable residues (NER) accounted for up to 24.7 % of the applied 14C-rimsulfuron and were distributed according to organic carbon in soil size fractions, suggesting a progressive incorporation process of NER to soil humus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.