Abstract

High-temperature thermal storage (HTTS) in soils is a promising energy-saving technology for space heating of buildings. Based on a laboratory experimental setup using a vertical borehole heat exchanger (BHE), dynamic changes of the soil temperature and moisture content during the thermal storage process are studied. Effects of the heat injection temperature and initial moisture content on the thermal performance of the BHE are analyzed. The results show that at the first thermal storage stage, the soil temperature and moisture content near the heat source may appear a temporary peak. Its occurrence depends on the initial soil moisture content, the heat injection temperature and the distance from the heat source. As the heat injection temperature increases, the heat transfer rate of the BHE increases greatly. As the initial soil moisture content increases, the temperature profile near the BHE tends to be deviated from the results predicted by heat conduction, thereby influencing the thermal performance of the BHE. The present results can provide useful guidelines for the design of an HTTS system. Copyright , Oxford University Press.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.