Abstract
Two lysimeters with the same dimensions were provided, and filled with the same loam clay. On the soil surface of one lysimeter, grass was planted to compare the hydrologic response of the grassed lysimeter with that of the other bare soil lysimeter. About half of the runoff from the bare soil lysimeter occurred as overland flow, the rest being groundwater flow. Overland flow scarcely occurred from the grassed lysimeter. Grass roots that developed deep into the soil layer play an important role in increasing the infiltration rate as well as in drying the soil uniformly throughout the soil layer by evapotranspiration, preparing for high infiltration and large rainwater storage for the subsequent rainfall event. Accordingly, the total loss by evapotranspiration from the grassed soil amounts to almost twice that from the bare soil. For an evaporation- and evapotranspiration-prohibited experiment, the recession characteristics from a saturation state showed similar features for the bare and grassed soils, indicating the same microstructure of high moisture reservability for both soils. The well-developed grass root system reformed the soil structure considerably to produce the seemingly contradicting characteristics of high moisture conductivity and high moisture reservability; i.e. a high infiltration rate and prolonged groundwater discharge. Finally, the importance of the initial soil moisture in the rainfall-runoff process, rainfall loss and runoff ratio is stressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.