Abstract

Context: Submillimeter galaxies are a population of dusty star-forming galaxies at high redshift. Measuring their properties will help relate them to other types of galaxies, both at high and low redshift. This is needed in order to understand the formation and evolution of galaxies. Aims: We use gravitational lensing by galaxy clusters to probe the faint and abundant submillimeter galaxy population down to a lower flux density level than what can be achieved in blank-field observations. Methods: We use the LABOCA bolometer camera on the APEX telescope to observe five cluster of galaxies at a wavelength of 870 micron. The final maps have an angular resolution of 27.5 arcsec and a point source noise level of 1.2-2.2 mJy. We model the mass distribution in the clusters as superpositions of spherical NFW halos and derive magnification maps that we use to calculate intrinsic flux densities as well as area-weighted number counts. We also use the positions of Spitzer MIPS 24 micron sources in four of the fields for a stacking analysis. Results: We detected 37 submm sources, out of which 14 have not been previously reported. One source has a sub-mJy intrinsic flux density. The derived number counts are consistent with previous results, after correction for gravitational magnification and completeness levels. The stacking analysis reveals an intrinsic 870 micron signal of 390 \pm 27 microJy at 14.5 sigma significance. We study the S_{24 micron} - S_{870 micron} relation by stacking on subsamples of the 24 micron sources and find a linear relation at S_{24 micron} < 300 microJy, followed by a flattening at higher 24 micron flux densities. The signal from the significantly detected sources in the maps accounts for 13% of the Extragalactic Background Light discovered by COBE, and the stacked signal accounts for 11%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.