Abstract

A novel label-free photoelectrochemical (PEC) biosensor is presented in this work. As a barrier, the DNA hydrogel could block the coupling between g-C3N4 and CdS quantum dots (QDs). Therefore, extremely low photocurrent signals were obtained. The presence of target microRNA-21 can initiate the rolling circle amplification (RCA) reaction, which in turn produces many repeated sequences to activate the CRISPR/Cas12a system. The trans-cleavage activity of the CRISPR/Cas12a system led to the degradation of DNA hydrogels efficiently. As a result, the g-C3N4/CdS QDs heterojunction was formed through "click" chemistry. Through the amplification of the RCA and CRISPR/Cas12a system, the sensitivity of the PEC biosensor was improved significantly with the detection limit of 3.2 aM. The proposed sensor also showed excellent selectivity and could be used to detect actual samples. In addition, the modular design could facilitate the detection of different objects. Thus, the proposed CRISPR/Cas12a system responsive DNA hydrogel provides a simple, sensitive, and flexible way for label-free PEC analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.