Abstract

Highly sensitive and specific detection of cancer markers (such as carcinoembryonic antigen) is very important for early diagnosis and treatment of cancer. Herein, we developed a label-free fluorescent aptamer biosensor based on the aggregation-induced emission (AIE) effect and hydroxycobalt oxide (CoOOH) platform, and used it to detect carcinoembryonic antigen (CEA) with high sensitivity and specificity. Fluorescent ionic liquid Compound B can combine with a CEA aptamer (CEA-Apt) through electrostatic attraction and hydrophobic interaction to form an ionic liquid/aptamer (CEA-Apt/B) complex and produce the AIE effect, thereby enhancing the fluorescence intensity of B. CEA-Apt/B was adsorbed on the surface of CoOOH when CoOOH was added to the buffer solution, and the fluorescence of B was quenched. After adding CEA to the solution, CEA-Apt/B bound to CEA and separated from the surface of CoOOH because CEA-Apt had stronger affinity for CEA, resulting in fluorescence recovery of B. In the level range of 0.67-10000 pg mL-1, the fluorescence recovery intensity of the sensor had an excellent linear relationship with the level of CEA, and its LOD was 0.2 pg mL-1 (S/N = 3). In addition, the sensor had good selectivity and can be directly used to detect CEA in human serum with high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call