Abstract

Carcinoembryonic antigen (CEA) is a cancer marker used for monitoring cancer treatment. Herein, a label-free electrochemical immunosensor for determining CEA concentration composed of the thiolated chitosan (tCHI) and the doped poly(N-methylaniline) (dPNMA) is proposed. The tCHI served as a support matrix for the immobilization of CEA antibodies (anti-CEA) and was prepared by using 11-mercaptoundecanoic acid (MUA) as a grafting agent on chitosan (CHI). The excellent electrical conductivity of the dPNMA was utilized as an electron transfer layer for the proposed immunosensor. The successful preparation of the tCHI was confirmed by the attenuated-total reflection Fourier transform spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were used to illustrate the performance of the proposed immunosensor. The determination of CEA concentration was relied on the decrease in the DPV current response with increasing CEA concentration from the creation of the antigen–antibody immunocomplex. The proposed immunosensor demonstrated a broad concentration range of 0.01 to 30 ng mL−1 with a low limit of detection (LOD) of 0.01 ng mL−1. In addition, the present sensor exhibited excellent selectivity, reproducibility, and long-term stability, suggesting its potential use to determine CEA in clinical immunoassay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.