Abstract

The quickest path problem is to find a path to send a given amount of data from the source to the destination with minimum transmission time. To find the quickest path, existing algorithms enumerate non-dominated paths with distinct capacity, and then determine a quickest path by comparing their transmission time. In this paper, we propose a label-setting algorithm for finding a quickest path by transforming a network to another network where an important property holds that each subpath of a quickest path is also a quickest path. The proposed algorithm avoids enumerating non-dominated paths whose transmission time is greater than the minimum transmission time. Although the computational complexity of the proposed algorithm is the same as that of existing algorithms, experimental results show that our algorithm is efficient when a network has two or more non-dominated paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.