Abstract

A Fe/Zr bimetal-organic framework (ZrFe-MOF) is utilized to establish a ratiometric fluorescent aptasensor for the determination of tetrodotoxin (TTX). The multifunctional ZrFe-MOF possesses inherent fluorescence at 445nm wavelength, peroxidase-mimetic activity, and specific recognition and adsorption capabilities for aptamers, owing to its organic ligand, and Fe and Zr nodes. The peroxidation of o-phenylenediamine (OPD) substrate generates fluorescent 2,3-diaminophenazine (OPDox) at 555nm wavelength, thus quenching the inherent fluorescence of ZrFe-MOF because of the fluorescence resonance energy transfer (FRET) effect. TTX aptamers, which are absorbed on the material surface without immobilization or fluorescent labeling, inhibit the peroxidase-mimetic activity of ZrFe-MOF. It causes the decreased OPDox fluorescence at 555nm wavelength and the inverse restoration of ZrFe-MOF fluorescence at 445nm wavelength. With TTX, the aptamers specifically bind to TTX, triggering rigid complex release from ZrFe-MOF surface and reactivating its peroxidase-mimetic activity. Consequently, the two fluorescence signals exhibit opposite changes. Employing this ratiometric strategy, the determination of TTX is achieved with a detection limit of 0.027ng/mL and a linear range of 0.05-500ng/mL. This aptasensor also successfully determines TTX concentrations in puffer fish and clam samples, demonstrating its promising application for monitoring trace TTX in food safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.