Abstract

Red blood cells have been extensively studied but many questions regarding membrane properties and pathophysiology remain unanswered. Proteome analysis of red cell membranes is complicated by a very wide dynamic range of protein concentrations as well as the presence of proteins that are very large, very hydrophobic, or heterogeneously glycosylated. This study investigated the removal of other blood cell types, red cell membrane extraction, differing degrees of fractionation using 1-D SDS gels, and label-free quantitative methods to determine optimized conditions for proteomic comparisons of clinical blood samples. The results showed that fractionation of red cell membranes on 1-D SDS gels was more efficient than low-ionic-strength extractions followed by 1-D gel fractionation. When gel lanes were sliced into 30 uniform slices, a good depth of analysis that included the identification of most well-characterized, low-abundance red cell membrane proteins including those present at 500 to 10,000 copies per cell was obtained. Furthermore, the size separation enabled detection of changes due to proteolysis or in vivo protein crosslinking. A combination of Rosetta Elucidator quantitation and subsequent statistical analysis enabled the robust detection of protein differences that could be used to address unresolved questions in red cell disorders. This article is part of a Special Issue entitled: Integrated omics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.