Abstract

Finding the DNA of the human immune deficiency virus (HIV) with simple and sensitive detection is the main challenge in early diagnosis of AIDS. Herein, two-point separation strategies based on the colorimetric and fluorescence are introduced. The naked-eye qualitative and semiquantitative colorimetric, and also accuracy fluorescence quantification of HIV-1 DNA were applied using label-free NiFe2O4@UiO-66 nanozyme with both functions of peroxidase-mimetic like and emitting fluorescence. The DNA probe-conjugated nanozyme is employed to hybridize a sequence of HIV-1. NiFe2O4@UiO-66 nanozymes catalyze the decomposition of H2O2 to •OH which can produce a remarkable fluorescent product 2-hydroxyterephthalic acid (TAOH) by the oxidation of the bridging ligand of weakly fluorescent terephthalic acid (TA). The accessibility of H2O2 toward confined-NiFe2O4 MNPs was reduced by increasing the HIV-1 target DNA concentration, resulting in the fluorescence intensity of TAOH being decreased. Meanwhile, remaining the unreacted H2O2 was transferred an acidic colorimetric solution containing FeSO4 and gold nanorods (AuNRs). Increasing the amount of H2O2 available for longitudinal etching of AuNRs due to •OH-generating Fe+2-catalyzed H2O2 is reponsible for different colors from brownish to colorless depending on the HIV-1 target DNA concentration. The fluorescence intensity and obtained colors have offered the sensitive biosensing methods with a linear range from 0.05 to 300 and 1–200 pM, respectively with a detection limit as low as 1 fM. Our study revealed that the applied sensing assay provides a cost-effective and straightforward qualitative, semiquantitative, and sensitive quantitation visible monitoring without the necessity of high-end instruments for HIV-1 detection in a human blood plasma/serum samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.