Abstract

Kanamycin is an aminoglycoside antibiotic that can be useful against both gram negative and positive bacteria. However, if its serum levels are not controlled properly, it can cause serious side effects like ototoxicity and nephrotoxicity. The aim of this study was to design a simple and rapid fluorescent aptasensor for detection of kanamycin, based on Aptamer/Complementary strand (dsDNA)-capped mesoporous silica nanoparticles (MSNs) and Rhodamine B as a fluorescent probe. The MSNs pores were filled with Rhodamine B and then gated with dsDNA. In the presence of kanamycin, the aptamer sequence was separated from its complementary strand (CS), so that, uncovered the pores and leading to leakage of Rhodamine B. Thus, a significant increase in the fluorescence intensity was observed. The relative fluorescence intensity showed a linearity range from 24.75 nM to 137.15 nM of kanamycin with a detection limit of 7.5 nM. The aptasensor also showed to be useful for detection of kanamycin in serum samples and was able to distinguish kanamycin from other antibiotics, resulting in a sensitive, rapid and inexpensive method for kanamycin detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.