Abstract

Metal-organic frameworks (MOFs) including cucurbit[7]uril block (Q[7]·HAuCl4) were employed to develop a diphenylamine (DPA) sensor in electrochemical method, the presence of HAuCl4 improved the conductivity of the macrocyclic compound. To further enhance of the sensitivity, Au nanoparticles were inserted between the surface of glassy carbon electrode and Q[7]·HAuCl4 MOFs (GCE-AuNPs-Q[7]·HAuCl4). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were applied for evaluation on the electrochemical behavior. For the electrochemical inertness of DPA, a label-free electrochemical sensor in 5mM K3[Fe(CN)6] solution was achieved, to produce a limit of detection as low as 4.6µM in a linear range of 5-1000µM with good reproducibility, high stability and acceptable anti-interference ability. Application of the proposed electrode for the quantitative determination of DPA in tap water and apple juice confirms its real value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.