Abstract

Vinblastine (VLB) is prescribed for a wide variety of cancers. Therefore, development of sensitive methods for early diagnosis is urgently required. In this work, a highly sensitive and label-free impedimetric biosensor was fabricated for the electrochemical detection of VLB. First, the gold nanoparticles (AuNPs) were electrodeposited on the surface of a glassy carbon electrode (GCE). 3-Mercaptopropionic acid (MPA) was self-assembled over the AuNPs. Then, tubulin (TUB), as a receptor, was covalently immobilized atthe AuNPs/GCE surface via carbodiimide coupling reaction using N-(3 dimethylaminopropyl)-N'-ethyl carbodiimide (EDC) and N-hydroxy succinimide (NHS). The step-by-step modification process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in the presence of a redox probe [Fe(CN)6]3-/4-. The VLB concentration was measured through the increase of impedance values in the corresponding specific binding of VLB and TUB. The increased electron-transfer resistance (R et) values were proportional to the value of VLB concentrations in the range of 0.4 to 65.0nmolL-1 with a detection limit of 8.4×10-2nmolL-1 (SN-1=3). The practical analytical performance of the proposed method was demonstrated by determination of VLB in plant extracts and human serum samples with satisfactory recoveries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.