Abstract

We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.