Abstract
Since ochratoxin A (OTA) is immunotoxic, teratogenic and carcinogenic, it is very important to monitor this compound in food samples. In the present work, the development and fabrication of a label-free electrochemical aptasensor based on the gold nanoparticles/silver-based metal-organic framework (AuNPs/Ag-MOF) for the determination of ochratoxin A (OTA) is introduced. The aptasensor was fabricated by electrodeposition of AuNPs on a glassy carbon electrode modified with Ag-MOF. The characteristics of the synthesized Ag-MOF were determined by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy. The aptamer was immobilized on the modified electrode and then OTA was incubated on it. The process of different stages of the aptasensor construction has been confirmed by two methods of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and using [Fe(CN)6]3-/4- as a redox probe. The EIS method has also been used for the OTA quantitative determination. The difference in charge transfer resistance (Rct) before and after the interaction of OTA with the immobilized aptamer was considered as the analytical response of the aptasensor. Using the developed aptasensor, it is possible to measure OTA in the concentration range of 1.0 × 10-3 to 200.0 ng mL-1 with a detection limit of 2.2 × 10-4 ng mL-1. Finally, the ability of the aptasensor to measure OTA in red and black pepper was investigated and completely satisfactory results were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Analytical methods : advancing methods and applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.