Abstract

Rapid, accurate and frequent detection of the RNA of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and of serological host antibodies to the virus would facilitate the determination of the immune status of individuals who have Coronavirus disease 2019 (COVID-19), were previously infected by the virus, or were vaccinated against the disease. Here we describe the development and application of a 3D-printed lab-on-a-chip that concurrently detects, via multiplexed electrochemical outputs and within 2 h, SARS-CoV-2 RNA in saliva as well as anti-SARS-CoV-2 immunoglobulins in saliva spiked with blood plasma. The device automatedly extracts, concentrates and amplifies SARS-CoV-2 RNA from unprocessed saliva, and integrates the Cas12a-based enzymatic detection of SARS-CoV-2 RNA via isothermal nucleic acid amplification with a sandwich-based enzyme-linked immunosorbent assay on electrodes functionalized with the Spike S1, nucleocapsid and receptor-binding-domain antigens of SARS-CoV-2. Inexpensive microfluidic electrochemical sensors for performing multiplexed diagnostics at the point of care may facilitate the widespread monitoring of COVID-19 infection and immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call