Abstract

We previously observed that Bacillus subtilis spores from sspE mutants presented a lower germination capacity in media containing high salt concentrations (0.9 M NaCl). This deficiency was attributed to the absence of SASP-E (gamma-type small-acid-soluble protein), rich in osmocompatible amino acids released by degradation. Herein we observed that, in addition, this mutant spore presented a reduced capacity to use L-alanine as germinant (L-ala pathway), required longer times to germinate in calcium dipicolinate (Ca(2+)-DPA), but germinated well in asparagine, glucose, fructose, and potassium chloride (AGFK pathway). Moreover, mild sonic treatment of mutant spores partially recovered their germination capacity in L-ala. Spore qualities were also altered, since sporulating colonies from the sspE mutant showed a pale brownish color, a higher adherence to agar plates, and lower autofluorescence, properties related to their spore coat content. Furthermore, biochemical analysis showed a reduced partition in hexadecane and a higher content of Ca(2+)-DPA when compared with its isogenic wild-type control. Coat protein preparations showed a different electrophoretic pattern, in particular when detected with antibodies against CotG and CotE. The complementation with a wild-type sspE gene in a plasmid allowed for recovering the wild-type coat phenotype. This is the first report of a direct involvement of SASP-E in the spore coat assembly during the differentiation program of sporulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.