Abstract

This paper describes the performance of a Ku-band 5-bit monolithic phase shifter with metal semiconductor field effect transistor (MESFET) switches and the implementation of a ceramic packaged phase shifter for phase array antennas. Using compensation resistors reduced the insertion loss variation of the phase shifter. Measurement of the 5-bit phase shifter with a monolithic microwave integrated circuit demonstrated a phase error of less than 7.5° root-mean-square (RMS) and an insertion loss variation of less than 0.9 dB RMS for 13 to 15 GHz. For all 32 states of the developed 5-bit phase shifter, the insertion losses were 8.2 ± 1.4 dB, the input return losses were higher than 7.7 dB, and the output return losses were higher than 6.8 dB for 13 to 15 GHz. The chip size of the 5-bit monolithic phase shifter with a digital circuit for controlling all five bits was 2.35 mm × 1.65 mm. The packaged phase shifter demonstrated a phase error of less than 11.3° RMS, measured insertion losses of 12.2 ± 2.2 dB, and an insertion loss variation of 1.0 dB RMS for 13 to 15 GHz. For all 32 states, the input return losses were higher than 5.0 dB and the output return losses were higher than 6.2 dB for 13 to 15 GHz. The size of the packaged phase shifter was 7.20 mm × 6.20 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call