Abstract

Legume plants are able to fix nitrogen in symbiotic association with rhizobia and, like many crops, are sensitive to high salt conditions. However, very few molecular markers can be associated to stress tolerance in legume crops. A Kruppel-like transcription factor, Mtzpt2-1, required for the formation of the nitrogen-fixing region, confers salt tolerance to yeast cells. Here, legume responses to salt stresses were studied using alfalfa and its close relative Medicago truncatula, a model legume species. Salt stress induces the Mszpt2-1 gene both in roots and root harbouring nodules. In addition, Sinorhizobium meliloti strains tolerating up to 700 mM NaCl, were used in nodulation assays to assess salt tolerance of the symbiotic response of M. truncatula. Few nodules, mainly in the upper part of the root, could be detected in plants treated with 200 m{M} NaCl, suggesting that nodule initiation was particularly sensitive to salt stress. We have also defined for M. truncatula the threshold of NaCl tolerance after which recovery of stressed plants is irreversible under laboratory conditions. After analysing several times of salt treatment (150 m{M} NaCl), M. truncatula 108R plants stressed for 7 days could not recover (less than 5%), whereas a 4-day treatment allowed at least 75% recovery. Transgenic M. truncatula plants expressing Mtzpt2-1 in antisense configuration are more sensitive to `recover' from salt stress than the wild type. These results identify Mtzpt2-1 as a molecular marker potentially linked to stress tolerance in M. truncatula and suggest its participation in a transcriptional program induced in these plants to cope with salt stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.