Abstract

A novel approach, referred to as sparse Kriging–NARX (KNARX), is proposed for the uncertainty quantification of nonlinear stochastic dynamical systems. It combines the nonlinear autoregressive with exogenous (NARX) input model with the high fidelity surrogate model Kriging. The sparsity in the proposed approach is introduced in the NARX model by reducing the number of polynomial bases using the least-angle regression (LARS) algorithm. Sparse KNARX captures the nonlinearity of a problem by the NARX model, whereas the uncertain parameters are propagated using the Kriging surrogate model, and LARS makes the model efficient. The accuracy and the efficiency of the sparse KNARX was measured through uncertainty quantification applied to three nonlinear stochastic dynamical systems. The time-dependent mean and standard deviation were predicted for all the numerical examples. Instantaneous stochastic response characteristics and maximum absolute response were also predicted. All the results were compared with the full scale Monte Carlo simulation (MCS) results and a mean error was calculated for all the numerical problems to measure the accuracy. All the results had excellent agreement with the MCS results at a very limited computational cost. The efficiency of the sparse KNARX also was measured by the CPU time and the required number of surrogate model evaluations. In all instances, sparse KNARX outperformed other state-of-the-art methods, which justifies the applicability of this model for nonlinear stochastic dynamical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.